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Abstract. The application of the magneto-circular x-ray absorption dichroism (MCXD) spin
sum rule for 3d transition metal compounds faces two problems: the unknown value of the
magnetic dipole operatorTz and the division between the L2 and L3 edges. A systematic study
of the order of magnitude of theTz-operator for 3dn ions is presented. The variation of the
Tz-values with temperature is described and analysed, for all cases from d1 to d9 cations in
two different situations. Firstly the perfect octahedral case is considered. It is shown thatTz is
non-zero for low temperature; but, as it originates only from d-electron spin–orbit splitting, it is
washed out at room temperature. Secondly, a model of the surface situation is considered. In
this caseTz originates mainly from the crystal-field splitting. It then exhibits quite large values
at any temperature and can by no means be neglected when applying the sum rule. The error
introduced in the sum rule due to the mixing of L2 and L3 edges has been estimated.

1. Introduction

In the past few years, thanks to technological advances in synchrotron radiation facilities,
there has been much activity in the study of the magnetic properties of materials using photon
beams. X-ray magnetic dichroism is one of the new tools for investigating the magnetism
of transition metal systems [1, 2, 3]. In 1975 Erskine and Stern [4] predicted the occurrence
of dichroism in x-ray absorption spectroscopy (XAS). Both linear and circular dichroism
can exist in XAS. In the first case, a difference in absorption for two different linear
polarizations of light is measured while magneto-circular x-ray dichroism (MCXD) measures
the difference in absorption between left- and right-polarized light sources. This paper is
concerned only with this latter kind of dichroism. For L2,3 edges of 3d transition metal
compounds and M4,5 edges of rare-earth compounds the MCXD spectra can be interpreted
with sum rules established by Thole and Carra [6, 7] which relate the dichroic spectra
to the magnetic moments of the valence shell probed by the absorption process. In the
case of L2,3 absorption edges of transition elements, the 2p XAS spectrum is dominated by
dipole-allowed transitions to d final states (it is known that the s channel can be neglected,
compared to the d channel, in this dipolar process [5]). The orbital sum rule relates the
dichroic spectrum area to the value of the orbital magnetic momentLz in the initial state
before the x-ray absorption process has occurred [6]:

−1

2nh

〈Lz〉 =
∫

L2,3

(µ+ − µ−) dE
/∫

L2,3

(µ+ + µ0 + µ−) dE.
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The denominator of the right-hand side of this expression is the isotropic XAS spectrum area
formed by the sum of the right (µ+), left (µ−) and linear (µ0) polarization absorption cross
sections for thez-axis, the numerator being the dichroic spectrum area. In the left-hand
side nh and 〈Lz〉 appear; these denote the number of holes in the d shell and the thermal
average value of the orbital moment for the d shell, both of these quantities being defined
for the ground state before the absorption process has occurred.

Due to the spin–orbit coupling of the 2p core level, the 2p XAS spectrum is divided
into two parts, namely the L2 and L3 edges. Based on the measurement of the MCXD
spectrum areas for the two edges, the spin sum rule enables an estimation to be made of
the spin magnetic momentSz in the initial state before the x-ray absorption process has
occurred [7]:

RS = 2

3nh

〈Sz〉 + 7

3nh

〈Tz〉

=
(∫

L3

(µ+ − µ−) dE − 2
∫

L2

(µ+ − µ−) dE

)/∫
L2,3

(µ+ + µ0 + µ−) dE.

(1)

The denominator of the right-hand side of this expression is the isotropic XAS spectrum
area formed by the sum of the right (µ+), left (µ−) and linear (µ0) polarization for the
z-axis. In this expressionTz appears, which is analogous to a magnetic dipole operator:

T =
∑

i

ti =
∑

i

si − 3
ri (ri · si )

r2
i

.

The total operatorT corresponds to a summation, with indexi, over the d electrons of a
one-electron operatort. In the z-direction,tz = sz(1 − 3 cos2(θ)). In equation (1)〈Sz〉 and
〈Tz〉 refer to the thermal average values of the spin and magnetic dipole operators for the d
shell in the ground state.

The expressions given above are written for the electric dipolar approximation for the
spectral shape. We just mention the existence of an extension of the sum rules including
electric quadrupolar transitions [8].

These two sum rules are of considerable interest for the study of magnetism. Indeed
they enable an element- and shell-specific measure of the orbital and spin orbital moments
to be obtained (in the present case of L2,3 edges the d shell of the transition metal is
probed). Moreover the orbital and orbital moment are estimated separately. Unfortunately
the effective application of the rules faces several drawbacks. Firstly the experiments are
not very easy to handle and present specific problems that we shall not discuss in the
present paper; for an example of a description of an experiment, see [9]. Secondly the
determination of the isotropic spectrum and of the number of holes in the ground statenh

is often problematic. However, the orbital angular momentum sum rule is usually admitted,
and this rule tends to be commonly used. Indeed both theoretical [10] and experimental
[11] checking confirms its applicability. In contrast, the applicability of the spin sum rule
is still debated as it raises two specific problems.

Firstly the problem of the L2- and L3-edge separation should be treated cautiously.
Indeed Carraet al indicate [7] that the sum rule is written with the following assumption:
the L2 and L3 parts of the spectrum are sufficiently separated that the mixing of the two
edges by core–valence interactions is negligible. For the early-transition-metal cations of
the first series this is obviously not the case, as the L2 and L3 edges cannot be distinguished
in the spectral shape. In [7] the authors consider that at the end of the first transition series
the error induced is smaller than 5%.
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Secondly theTz-term that appears in the sum rule is regarded as troublesome. Indeed one
usually wishes, with this rule, to determine the value of the spin momentum. It is therefore
better to study conditions in which this term is negligible. In [7] it is claimed that, in 3d
transition metal compounds for Oh cation site symmetry, theTz-part can be neglected, the
reason being that only spin–orbit coupling can produce a non-zeroTz and that this coupling
is small enough to allow the neglect ofTz within an accuracy of 15%. This is indeed the
case for transition metals such as iron, cobalt or nickel. This has been demonstrated by
band-structure calculations, in which aTz/Sz ratio of less than 1% is expected [12]. We
can, however, note that, even for metals, Wuet al [10] expect large values forTz if the
surrounding of the metallic atoms deviates from the perfect octahedral situation of the bulk.

For rare-earth or transition metal compounds (oxides or halides for instance) the situation
appears much less clear. Indeed a calculation made by Arrioet al [13] for a d9 ion
in octahedral symmetry shows that at zero temperature,Tz can be quite large and even
larger thanSz. Not knowing the value ofTz often makes the rule inapplicable (see, for
example, [14]). This difference between transition metals and transition metal compounds
can be tracked in the huge difference in electronic structure between these two kinds of
material. In transition metal compounds band-structure effects are much less important than
in transition metals, in which they play a leading role. In contrast, the electronic structure of
the d orbitals of the cations in transition metal compounds is dominated by local effects, the
two major ones being intracationic electronic interactions and crystal-field splitting induced
by the oxygen anions.

We present in this paper a study of the two specific problems of the spin sum rule in
the case of transition metal compounds (as opposed to transition metals). To estimate the
importance of theTz-term for transition metal compounds we address the question of the
orders of magnitude of theTz-operator through the 3d transition series. We show calculations
of Tz-values in two typical situations: perfect octahedral surroundings of the cation and an
example of a surface case. We highlight, for a given ion and geometry, the variation of
the Tz-values with temperature. Our goal there is not to produce tables ofTz-values for
direct use, but to exhibit trends and orders of magnitude for different temperatures and dn

configurations.
Secondly we tackle briefly the problem of the separation of the L2 and L3 edges.
The next section presents our calculation method. Then we present and discuss our

results forTz in the octahedral situation and in the surface situation. The last section deals
with the separation of the L2 and L3 edges.

2. Calculation method

Our calculations are based on a configuration interaction (CI) semi-empirical cluster
approach already used in [15, 16]. We recall briefly the characteristics of our method.
We consider a cluster made up of a transition metal cation surrounded by its oxygen first
neighbours. The d and 2p orbitals of the cation are considered. The calculation is made
in the ionic limit so that no hybridization occurs between the cations and the oxygen ions.
The Hamiltonian acting on the cation takes into account the crystal-field splitting in a
point charge model, the intracationic electronic repulsions (i.e. d-electron interactions and
electron–core-hole interactions), and spin–orbit coupling of 2p and d orbitals of the cation.
This Hamiltonian is written in a multielectronic basis made up of Slater determinants.

In order to study the values ofTz through the first transition series we considered one
example of a cation for each dn configuration fromn = 1 to n = 9 (see table 1). Only one
type of cation was considered for each configuration, as it is known that the differences



4098 J P Crocombette et al

Table 1. dn cations used in the calculations.

dn Cation

d1 V3+
d2 V2+
d3 Cr3+
d4 Cr2+
d5 Mn2+
d6 Fe2+
d7 Co2+
d8 Ni2+
d9 Cu2+

between the parameters of the different dn cations produce only small differences in XAS
spectra [17, 18]. The Slater integrals appearing in intracationic elements of the Hamiltonian
were taken from Hartree–Fockab initio calculations [17], but these values obtained by the
one-electron method should be reduced to account for intra-atomic correlation effects before
use in configuration interaction calculations [19]. We chose a multiplicative factor of 80%.
The spin–orbit coupling parameters are taken from the same Hartree–Fock calculations [20].

In our point charge model the crystal-field splitting, for a given set of atomic positions,
depends on two parametersr2 andr4. See [21] for details of the crystal-field calculations.
In the particular case of Oh symmetry, onlyr4 acts on crystal-field splittings. The crystal-
field splitting was taken to be 10Dq = 1.5 eV. This corresponds, for the cation–oxygen
distance we chose (2̊A), to r4 = 1.0 Å4.

We have chosen thez-axis of quantization along a cation–oxygen direction. A supp-
lementary term in the Hamiltonian can be introduced to mimic the effect of a magnetic
or interatomic exchange field in this direction. In the present work, in order to reproduce
a magnetic arrangement, we introduced an exchange field which splits the up and down
electrons by an energyVH . We choseVH = 0.05 eV as this is the value used in the original
paper by Carraet al [7].

At 0 K the cation is in the ground state, i.e. only the eigenvectors corresponding to
the lowest eigenvalue of the Hamiltonian are populated. The ground state is either non-
degenerate, in which case it is represented by one vector, or degenerate, in which case
it is represented by an equally distributed set of orthogonal eigenvectors forming a basis
of the ground-state eigenspace. At non-zero temperature, higher-energy eigenvectors are
populated. The distribution weights of the eigenvectors of the Hamiltonian in the equilibrium
state follow a Maxwell–Boltzmann law.

The calculation ofSz and Tz develops as follows: consider8, an eigenvector of the
Hamiltonian.8 is expressed as a linear combination of Slater determinants:

|8〉 =
∑

i

ai |(dn)i〉.

In the summation,i runs over the Slater determinants of the dn configuration of the ion.
Let Oz be a monoelectronic operator acting on the d electrons of the cation, namely

Sz or Tz. The mean value ofOz in the 8 state is given by〈Oz〉 = 〈8|Oz|8〉. Oz, being
a summation over d electrons of the monoelectronic operatoroz, can be expressed in the
framework of second quantization as

Oz =
∑
αβ

(oz)αβC+
α Cβ
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whereα andβ run over the d spin orbitals and(oz)αβ is the matrix element ofoz connecting
α- andβ-orbitals. In order to calculate this expression, one has to calculate theoz-matrix
in the basis of one-electron d functions.

We used the usual t2g–eg d-orbital basis set made up of dx2−y2, d3z2−r2, dxy , dzx and dyz

for the orbital part; the spin part, indicated byms , equals up or down.

Table 2. Top: theTz-matrix in the spherical harmonics basis set. Bottom: theTz-matrix in the
t2g–eg basis set.

−2 ↑ −1 ↑ 0 ↑ 1 ↑ 2 ↑ −2 ↓ −1 ↓ 0 ↓ 1 ↓ 2 ↓
−2 ↑ 2/7 −3/7

−1 ↑ −1/7 1
7

√
3
2

0 ↑ −2/7 1
7

√
3
2

1 ↑ −1/7 3/7
2 ↑ 2/7

−2 ↓ −2/7
−1 ↓ −3/7 1/7

0 ↓ − 1
7

√
3
2 2/7

1 ↓ − 1
7

√
3
2 1/7

2 ↓ 3/7 −2/7

x2 − y2 ↑ z2 ↑ xy ↑ zx ↑ yz ↑ x2 − y2 ↓ z2 ↓ xy ↓ zx ↓ yz ↓
x2 − y2 ↑ 2/7 −3/14 −3i/14
z2 ↑ −2/7 −√

3/14 i
√

3/14
xy ↑ 2/7 3i/14 −3/14
zx ↑ −1/7 −3/14 −√

3/14 3i/14
yz ↑ −1/7 −3i/14 i

√
3/14−3/14

x2 − y2 ↓ −3/14 3i/14 −2/7
z2 ↓ −√

3/14−i
√

3/14 2/7
xy ↓ −3i/14 −3/14 −2/7
zx ↓ −3/14 −√

3/14 −3i/14 1/7
yz ↓ 3i/14 −i

√
3/14−3/14 1/7

In this basis the operatorSz is, of course, diagonal. We give in table 2 thetz-matrix,
both for the spherical harmonics basis and the t2g–eg basis.

As we now have theoz-matrix, 〈8|Oz|8〉 can be calculated using the usual second-
quantization techniques.

The expectation value ofOz in the ground state (in the equilibrium state) is then
the weighted summation over the8 eigenvectors of〈8|Oz|8〉 for each eigenvector8
contributing to the ground state (the equilibrium state).

In the last part of this paper we present some checking of the MCXD spin sum rule
involving calculations of polarized XAS spectra. In the dipolar approximation for which
the sum rules are written, according to the Fermi Golden Rule, the absorption cross section
is given by:

σ(E) ∝
∑
F

|〈8G|ε · r|8F 〉|2 δ(EG + hν − EF )

whereF runs over the final states.
The dipolar operatorε · r can be developed in terms of spherical harmonicsYm

1 :

ε · r = r(uY−1
1 + vY 1

1 + wY 0
1 ).
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The polarized spectraµ+, µ− andµ0 correspond to the case whereε · r is proportional to
Y−1

1 , Y 1
1 and Y 0

1 respectively. This leads to three sets of transition probabilities from 2p
core states to d orbitals. The spectra are calculated for each of these cases. The integrations
over the spectra appearing in the sum rules can then be calculated.

3. Tz in Oh symmetry

In this part we deal with the specific case of the Oh symmetry for the cation site. So
we consider a central cation surrounded by six oxygen ions in perfect octahedral positions
around the central cation.

We first recall the fact that in Oh symmetryTz = 0 for all dn cases when d-orbital spin–
orbit coupling is set to zero [7]. A sketch of the explanation, for high-spin configurations,
can be obtained by looking at thetz-matrix in the t2g–eg basis. The exchange field introduced
tends to align the spins in thez-direction. When the number of electrons on the cation is
lower than five, they are all either up or down. If they are all down only the right-hand
lower corner of thetz-matrix comes into play for the calculation ofTz. This 5× 5 matrix
is diagonal. So the value ofTz is only the summation oftz for all occupied orbitals in
the states forming the ground state. In the d1 case the ground state is made up of three
vectors with the same probability:81, 82 and83 in which dxy , dzx and dyz are occupied
respectively. The value ofTz in this state is therefore the sum of the values ofTz for 81, 82

and83 which are the values oftz for dxy , dzx and dyz respectively. This summation leads to
Tz = 0. Another example is the d3 case in which the ground state is made up of one single
vector 8 with dxy , dzx and dyz occupied. ThenTz(8) = tz(dxy) + tz(dzx) + tz(dyz) = 0.
Complete calculations of cation ground states show in the same way thatTz is zero for
any dn configuration for an octahedral cation site when d-orbital spin–orbit coupling is
neglected.

Table 3. Sz- and Tz-values for Oh symmetry sites from d1 to d9. In the first column the
spectroscopic crystal-field terms of the ground state in an octahedral field but without d spin–
orbit coupling are indicated [23]. The second column gives the energy difference between the
ground state and the first excited state for the complete calculation including spin–orbit coupling.
TheSz- andTz-values are given atT = 0 K, 80 K and 300 K in third, fourth and fifth columns
respectively.

T = 0 K T = 80 K T = 300 K

1 Sz Tz Sz Tz Sz Tz

d1 (2T2) 6.6× 10−3 eV −0.500 0.137 −0.481 1.3× 10−2 −0.361 −2 × 10−3

d2 (3T1) 1.31× 10−2 eV −0.999 −0.131 −0.983 −7.9× 10−2 −0.818 −8 × 10−3

d3 (4A2) 5.00× 10−2 eV −1.499 3× 10−5 −1.499 3× 10−5 −1.332 2× 10−6

d4 (5E) 1.4× 10−3 eV −1.999 0.301 −1.998 3.0× 10−2 −1.830 7× 10−3

d5 (6A1) 5.00× 10−2 eV −2.499 2× 10−4 −2.499 2× 10−4 −2.330 2× 10−4

d6 (5T2) 2.27× 10−2 eV −1.937 −6.4× 10−2 −1.937 −5.5× 10−2 −1.805 9× 10−4

d7 (4T1) 4.29× 10−2 eV −1.364 3.1× 10−2 −1.364 3.1× 10−2 −1.256 1.1× 10−2

d8 (3A2) 4.99× 10−2 eV −0.997 −1 × 10−3 −0.996 −2 × 10−3 −0.836 −2 × 10−3

d9 (2E) 2.1× 10−4 eV −0.498 −0.260 −0.495 −6 × 10−3 −0.369 −3 × 10−3

In contrast, d-orbital spin–orbit coupling is fully considered in our calculations (see the
preceding section). Our results will thus enable us to assess the importance of spin–orbit
coupling for theTz-value. Its variation with temperature is illustrated by the three cases that
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were considered: the ground state (at 0 K) and the equilibrium states at 80 K and 300 K.
The values ofSz (showing the alignment of the spins in the direction of the exchange field)
andTz, in units of h̄, for the ground state and equilibrium states are indicated in table 3.

To explain the values of table 3 one should consider spin–orbit splittings of the ground
state from a perturbative point of view. In order to have a non-zeroTz for a state8, there
should be some spin–orbit coupling in this state. Let80 be the ground state without spin–
orbit coupling. When spin–orbit coupling is turned on,80 will sustain an energy change
and possibly a splitting due to the supplementary interaction. This change can be of either
first order or second order inζd (whereζd is the d-electron spin–orbit coupling constant).
The perturbative effect of spin–orbit coupling on80 is explained in [22]. It can be summed
up by saying that the conditions for an octahedral crystal-field term to be split to first order
are: the spin should be non-zero; and the orbit has to be degenerate (otherwise there is only
a second-order energy change without splitting) with the exception ofE which does not
split to first order.

In order to support our analysis, we have also indicated in table 3 the spectroscopic
crystal-field term of the ground state for each dn ion in an octahedral field but without d
spin–orbit coupling [23]. The second column gives1, defined as the energy difference
between the ground state and the first excited state (for the complete calculation including
spin–orbit coupling).

Three situations can be distinguished.

(1) The d3 (4A2), d5 (6A1) and d8 (3A2) cases. The orbital part of the crystal-field term
on 80 is not degenerate. Thus there is no first-order term of spin–orbit coupling. There is
a second-order correction energy but this correction does not split80. Tz is then zero to
first order and appears only as a second-order term. In this situationTz is very small at any
temperature. The energy difference1 is large because, as80 is not split, 1 measures a
zero-order energy difference close to the energy difference between80 and81 first excited
states without spin–orbit coupling.

(2) The d1 (2T2), d2 (3T1), d6 (5T2) and d7 (4T1) cases. The conditions for a first-order
spin–orbit splitting are fulfilled. ThusTz is non-zero to first order. Indeed, atT = 0, Tz

is found to be large.Tz decreases when all spin–orbit-split sublevels tend to be equally
populated with increasing temperature. The energy difference between these levels being
of first order (as can be seen from the values of1), Tz decreases slowly when temperature
is raised (seeT = 80 K). Still, room temperature is large enough to effectively quenchTz.
Note that for d6 and d7 configurations the spins are only partially aligned with the exchange
field which leads to smallerTz-values (seeSz- and Tz-values at 0 K). This is only due to
the arbitrary choice of the exchange field and does not provide evidence of any particular
behaviour.

(3) The d4 (5E) and d9 (2E) cases. In these two cases, spin-orbit interaction splits80

but only at second order. But the quenching of first-order values ofL · S for E terms does
not imply that the first-order values ofTz are quenched. Indeed in the present case the
second-orderL · S splitting produces for each split vector a large, first-order, value forTz.
ThenTz is large atT = 0 K. However, as the energy splitting between the spin–orbit-split
levels is of second order (1 is indeed small), they are quickly populated with increasing
temperature. And soTz decreases quickly with temperature (seeT = 80 K).

This classification accounts well for the values ofTz at T = 0 and for the trends of
variation with increasing temperature. Whatever the case may be, in all situationsTz is
close to zero at room temperature.

Concerning the MCXD spin sum rule, Carraet al [7] claimed thatTz could be neglected
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in octahedral symmetry. They expected that the effect of theTz-term was to introduce
an error of not more than 15% in theSz-value. Our calculations show that at room
temperature, the values ofTz are indeed very small and thus can be neglected. But, at
very low temperature the error introduced by neglectingTz can be much larger. This is
enhanced by the fact that theTz-value appears in the expression for the sum rule with
a multiplicative factor of 7/2 compared to theSz-value. In this case theTz-contribution
cannot be neglected. This is evidence of the importance of d-orbital spin–orbit coupling—
responsible for the non-nullity ofTz. However small, it proves non-negligible in this case.
At room temperature, however, its effect is hidden by thermal effects.

Table 4. Sz- andTz-values in the surface site from d1 to d9, at T = 0 K andT = 300 K. In
the last column the results for calculations without spin–orbit coupling atT = 0 K are given.

T = 0 K T = 300 K T = 0 K, ζd = 0

Sz Tz Sz Tz Tz

d1 −0.499 0.134 −0.373 0.107 0.1429
d2 −0.996 0.268 −0.827 0.222 0.2531
d3 −1.499 −4 × 10−3 −1.328 −3 × 10−3 0
d4 −1.999 0.294 −1.835 0.270 0.2857
d5 −2.499 −4 × 10−3 −2.330 −4 × 10−3 0
d6 −1.998 −0.146 −1.858 −0.132 −0.1428
d7 −1.481 −0.217 −1.214 −0.178 −0.2498
d8 −0.994 −9 × 10−3 −0.827 −8 × 10−3 0
d9 −0.499 −0.266 −0.372 −0.199 −0.2857

4. Tz in a surface case

The contribution ofTz is expected to be larger when the cation site symmetry is lower than
Oh [10], as may occur for some compounds for bulk cation sites. A symmetry reduction
also appears when a surface site is considered. To illustrate this point, we analyse the
situation of a cation surrounded by five oxygen ions, 2Å distant from the cation, occupying
all but one of the six positions of the perfect octahedral surroundings. The oxygen ions in
these positions correspond to the first neighbours of a cation in a (100) surface of rock-salt
structure. In this symmetry the crystal-field splitting depends on bothr2 and r4. For r4

we used the same value as before: 1Å4. For r2 we chose 0.43̊A2, which leads to the
following splittings of d orbitals:

E(dzx) = E(dyz) = −0.65 eV E(dxy) = −0.2 eV

E(d3z2−r2) = +0.2 eV E(dx2−y2) = 1.3 eV.

We have calculated the values ofSz andTz in the ground state and atT = 300 K (table 4).
Compared to the octahedral situation, the most striking change is the remanence of the

large value ofTz at large temperature. The ground-state values are of the same order as the
octahedral case values, but they barely decrease with increasing temperature. Note the d3,
d5 and d8 cases whereTz is small as in the octahedral case. This arises simply from the
fact that the filling of the orbitals is the same as in the octahedral case until the crystal field
is large enough for a low-spin ground state to be obtained.

To highlight the difference between the surface and the octahedral situation we made
calculations without spin–orbit coupling for the surface case (see the last column of table 4).
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In the octahedral situationTz would always be zero. In contrast, surface calculations exhibit
large values for the d1, d2, d4, d6, d7 and d9 cases. The obvious conclusion is that, in the
surface situation, spin–orbit coupling is not the only factor acting onTz. The non-zero
Tz-values come indeed from the particular crystal-field splitting. Consider for instance the
d1 case where the d electron occupies either the dzx or the dyz orbital, these two lying
lowest in energy. The value oftz in both of these orbitals is 1/7 (see thetz-matrix in the
t2g–eg basis). The calculatedTz-value corresponds exactly to this value. In Oh symmetry
Tz lowers to zero as the dxy orbital, with a value of−2/7 for tz, and dzx or dyz become
equally populated.

Comparing the situations with and without spin–orbit coupling, one can see that its
influence is relatively small, the leading effect being that of the crystal field. In the d3, d5

and d8 cases the crystal-field influence is quenched by the filling of t2g or eg orbitals. In
these cases only,Tz is driven by spin–orbit coupling. But as in the octahedral situation they
correspond to very smallTz-values.

The remanence of the largeTz-values at room temperature is directly related to the
crystal-field origin of the non-zero values forTz. Indeed the energy differences due to
crystal-field splittings (a few tenths of an eV) are large, so they are not washed out at room
temperature.

The effects that create non-zero values forTz are thus very different in the surface
case and in the octahedral situation. In the latter, only spin–orbit coupling can produce
non-zeroTz. This interaction, being small, is easily screened by temperature, and soTz is
small at room temperature. In contrast, in the surface situation the crystal-field splitting is
responsible for non-zeroTz-values. As the energy splittings are much larger,Tz remains
important at room temperature.

The results of this surface example indicate that for transition metal compounds with
low-symmetry surface or bulk cation sites, one could expect similar large and remanent
values ofTz.

For the MCXD spin sum rule, our calculations show that when the spectrum includes
a large signal arising from the surface cations, as happens in the ion-yield detection mode
and Auger detection mode, theTz-factor can by no means be neglected.

Should the case arise in the study of a specific case where the structure of the surface
is known, crystal-field calculations in our framework would allow a guess to be made of
the expectedTz-values.

The situation in transition metal compounds can be compared with what happens for
rare-earth compounds. In these latter, the spin–orbit couplings are larger than the crystal-
field splittings. So the largeTz originates mainly from spin–orbit coupling. For instance,
in [9] Collins et al make an estimation ofTz-values in uranium sulphide, US. They show
that it originates from f-electron spin–orbit coupling and that the effect of the crystal field
can be effectively neglected. One can probably expect in this case a larger remanence ofTz

with increasing temperature compared to what we calculate for spin–orbit-inducedTz-values
in the octahedral situation in transition metal compounds. Indeed the rare-earth f-electron
spin–orbit coupling is larger than that of 3d electrons in transition metal compounds.

5. L2 and L3 splitting

The fact thatTz can be non-zero does not make the spin sum rule useless. It introduces
a supplementary factor in the expression for the rule. The splitting of L2 and L3 edges
can be a more crucial problem. It is known that when 2p-core-hole spin–orbit coupling is
weak, the L2 and L3 edges are mixed due to d-electron–2p-core-hole interactions. This is
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obvious for the early 3d transition metals in which the L2 and L3 edges cannot be separated
in the spectra. But as soon as the spin–orbit coupling constantζ2p is somewhat larger than
6 eV, the separation of the spectra into two parts is apparent [17]. Whenζ2p is very large
these two parts correspond exactly to the excitation of an electron of the 2p3/2 (L3-edge)
and 2p1/2 (L2-edge) levels.

In order to make an estimation of the error induced by L2–L3 mixing, we calculated
the dichroic and isotropic spectra for cations in octahedral sites for d4 to d8 configurations
at T = 300 K. Note that for d9 ions there is no possible mixing of L2 and L3 edges as the
d shell is filled in the XAS final state, 2p5d10. The XAS spectrum then presents only two
peaks, one for each core-hole state. In this case the sum rules apply perfectly.

Table 5. Application of the MCXD spin sum rule: ground-state calculated and expected
spectrum values of 2Sz + 7Tz in the octahedral situation atT = 300 K. In the last column
the discrepancy between the two figures is given.

Calculated 2Sz + 7Tz Expected 2Sz + 7Tz Discrepancy

d4 (Cr2+) −3.61 −1.58 56%
d5 (Mn2+) −4.66 −3.36 28%
d6 (Fe2+) −3.60 −3.25 10%
d7 (Co2+) −2.43 −2.19 10%
d8 (Ni2+) −1.68 −1.53 9%

The values of 2Sz + 7Tz were estimated from the spectra by applying the sum rule.
These are to be compared with the values obtained from calculated values ofSz andTz for
the initial state appearing in the right-hand column of table 3 (see table 5). The agreement,
very poor in the Cr2+ (d4) and Mn2+ (d5) cases, tends to be better for heavier atoms.
Nevertheless the differences are important even for compounds at the end of the transition
series. These results show that even at the end of the first transition series the separation
between the L2 and L3 edges is not fully achieved and that the mixing of the two edges can
affect the results for all of the elements in the first transition series.

The cases of the cations in the middle of the series deserve special stress. Indeed in
these compounds the L2,3 spectra can be divided in two parts; the L2 and L3 edges seem
then to be separated. In fact they still mix in the sense that not all of the peaks from the
low-energy part of the L2,3 edge correspond to purely 2p3/2 (L3-edge) core holes; in the
same way not all of the peaks from the high-energy part of the spectra correspond to purely
2p1/2 (L2-edge) core holes. Even if a separation of the spectra into two parts is apparent,
these compounds do not fulfil the conditions of applicability defined by Carraet al [7]. The
application of the sum rule would lead for these compounds to large errors for 2Sz + 7Tz .

6. Conclusions

The application of the MCXD spin sum rule to cation L2,3 edges in transition metal
compounds faces two problems: the value of the magnetic dipole operatorTz and the
division between the L2 and L3 edges. In order to study the importance of the magnetic
dipole termTz at different temperatures, we have calculated the value of theTz-operator
for all dn cations (from d1 to d9) in Oh symmetry and for a model of the surface situation.
For the octahedral situation non-zero values ofTz originate only from spin–orbit coupling.
We have shown that this small effect leads to importantTz-values at low temperature.
Nevertheless they are rapidly quenched when temperature is raised, and so theTz-part of
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the sum rule can be neglected at room temperature. In contrast, in the surface case, non-
zero Tz-values originate mainly from crystal-field splittings. As these splittings are large,
Tz remains important even at room temperature. It can by no means be neglected in this
case.

The error introduced in the sum rule due to the mixing of L2 and L3 edges has been
estimated. This error decreases with spin–orbit coupling of the core hole but we have
highlighted that even when L2 and L3 edges seem to be separated in the spectrum the error
introduced by their mixing can still be large. This is in particular the case for the transition
cations in the middle of the first transition series.
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